The TE525, manufactured by Texas Electronics, has a 6 in. orifice and measures rainfall in 0.01 in. increments. It is compatible with all Campbell Scientific dataloggers, and it is widely used in environmental monitoring applications.
Read MoreThe TE525 funnels precipitation into a bucket mechanism that tips when filled to its calibrated level. A magnet attached to the tipping mechanism actuates a switch as the bucket tips. The momentary switch closure is counted by the pulse-counting circuitry of our data loggers.
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR1000X (retired) | ||
CR300 (retired) | ||
CR3000 (retired) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) |
The TE525 rain gage mounts to a CM300-series Mounting Pole or a user-supplied 1.5-in. IPS pole. Several pedestal options are available to secure a CM300-series pole to the ground (see Ordering Information). Accurate measurements require the gage to be level.
The TE525 cannot be directly used with our CS705 rainfall adapter. However, the CS705 is compatible with the TE525WS, and the TE525 can be converted to a TE525WS by returning it to Campbell Scientific (requires an RMA).
Campbell Scientific offers the 260-953 Wind Screen to help minimize the effect of wind on the rain measurements. This wind screen consists of 32 leaves that hang freely and swing as the wind moves past them.
Sensor Type | Tipping bucket with magnetic reed switch |
Material | Anodized aluminum |
Operating Temperature Range | 0° to 50°C |
Resolution | 1 tip |
Volume per Tip | 4.73 ml/tip (0.16 fl. oz/tip) |
Rainfall per Tip | 0.254 mm (0.01 in.) |
Accuracy | 1.0% up to 50 mm/h (2 in./h) |
Cable Type | 2-conductor shielded |
Orifice Diameter | 15.4 cm (6.06 in.) |
Height | 24.1 cm (9.5 in.) |
Cable Weight | 0.1 kg (0.2 lb) per 3.05 m (10 ft) length |
Tipping Bucket Weight | 0.9 kg (2.0 lb) |
Number of FAQs related to TE525-L: 5
Expand AllCollapse All
The thermistor is located approximately 3 mm (0.125 in.) back from the probe tip.
Note the difference between calibration and a field check. Calibration cannot be done in the field, as it requires an experienced technician and specialized equipment.
Field checks of measurements can be done to determine if the data make sense with the real-world conditions. Follow these steps to field check a sensor:
Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:
If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field on the product’s Ordering tab. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.
If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.
The sensor/probe consists of a non-linear thermistor configured with a precision resistor in a half-bridge circuit, as shown in the product’s manual:
To measure the sensor/probe, the measurement device has to provide a precision excitation voltage (Campbell Scientific dataloggers use 2000 mV), measure the voltage across the precision resistor, determine the thermistor resistance (Ohm's law), and convert the resistance to temperature using the Steinhart-Hart equation.
The Steinhart-Hart equation is 1/T = A + Bln(R) + C(ln(R))3 where:
For the 107-L, 107-LC, 108-L, and 108-LC, the following are the coefficients for the Steinhart-Hart equation:
For the 109-L, the following are the coefficients for the Steinhart-Hart equation:
Many Campbell Scientific sensors are available with different cable termination options. These options include the following:
Note: The availability of cable termination options varies by sensor. For example, sensors may have none, two, or several options to choose from. If a desired option is not listed for a specific sensor, contact an application engineer at Campbell Scientific for assistance.