The NR-LITE2 is a rugged net radiometer that measures the energy balance between incoming short-wave and long-wave infrared radiation relative to surface-reflected short-wave and outgoing long-wave infrared radiation. It is directly connected to a Campbell Scientific datalogger and is widely used in agriculture and hydrology applications.
Read MoreThe NR-LITE2 includes two black conical absorbers—one facing upward and the other facing downward. The absorbers are coated in PTFE, making them resistant to weather without using a fragile plastic dome. Both absorbers are calibrated to an identical sensitivity coefficient.
The NR-LITE2 has a bubble level to ensure proper installation and a rod that deters birds from roosting on the sensor. It produces a millivolt signal that is measured directly by a Campbell Scientific datalogger.
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR1000X (retired) | ||
CR300 (retired) | ||
CR3000 (retired) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR850 (retired) | ||
CR850 (retired) |
To avoid shading/reflections and to promote spatial averaging, the NR-LITE2 should be mounted at least 1.5 m above the ground or crop canopy and away from all obstructions or reflective surfaces that might adversely affect the measurement. Campbell Scientific recommends mounting the NR-LITE2 to a separate vertical pipe at least 25 ft away from other mounting structures. The 26120 Net Radiation Sensor Mounting Kit is used to mount the NR-LITE2 to a vertical pole or a horizontal crossarm, such as the CM202, CM203, CM204, or CM206.
Sensor | Two black conical absorbers—one facing upward and the other facing downward |
Measurement Description | Measures incoming and outgoing short-wave and long-wave radiation |
Spectral Range | 0.2 to 100 µm |
Response Time | < 20 s (nominal) |
Sensitivity | 10 µV W-1 m2 (nominal) |
Output Range | ±25 mV |
Measurement Range | ±2000 W m-2 |
Operating Temperature Range | -40° to +80°C |
Sensor Diameter | 8.0 cm (3.1 in.) |
Support Arm Diameter | 1.6 cm (0.6 in.) |
Support Arm Length | 80 cm (31.5 in.) |
Sensor Weight | 200 g (7.0 oz) |
Support Arm Weight | 635 g (23 oz) |
Number of FAQs related to NR-LITE2-L: 9
Expand AllCollapse All
The HFP01-L uses a thermopile to measure flux across the plate. The output of a thermopile is proportional to the temperature gradient across the thermopile. The HFP01-L nominal calibration is 20 W m-2 /mV. The HFP01-L output voltage will depend on the temperature gradient (flux) across the plate.
It depends on the sign convention used to describe heat flux through the wall. Heat flux that enters the red face and exits the blue face of the HFP01-L results in a positive analog output or positive heat. If the plate is already installed and it is desirable to use the opposite sign convention, change the sign of the multiplier to make it a negative value.
Yes, however, care must be taken to ensure a water-tight splice, such as by using an adhesive-lined heat shrink to cover the splice. This is important because splicing cable together increases the likelihood that water may enter the cable and cause shorting, corrosion, and some other potential issues, which can cause measurement issues.
Because of the potential issues, do not splice any sensor cable without first contacting an application engineer at Campbell Scientific to discuss the sensor in detail.
To incorporate a sensor that is compatible with wireless sensor interfaces into a wireless network, a CWS900-series wireless sensor interface is needed, as well as an A205 CWS-to-PC interface to configure it.
The information included on a calibration sheet differs with each sensor. For some sensors, the sheet contains coefficients necessary to program a datalogger. For other sensors, the calibration sheet is a pass/fail report.
This depends on the information contained in the calibration sheet:
Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:
If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field on the product’s Ordering tab. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.
If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.
Because of the loss of IR radiation, nearly all thermopile instruments typically have a negative offset. This offset is most easily visible at night-time, when a small negative value is read instead of zero. This same offset is present during the daytime, but it is not as visible because of the large solar signal.
Another common issue involves leveling an instrument. Leveling a thermopile instrument can cause errors in the direct beam component because the cosine response is not correct. These errors are more notable when the sun is close to the horizon because the angle is so shallow.
Many Campbell Scientific sensors are available with different cable termination options. These options include the following:
Note: The availability of cable termination options varies by sensor. For example, sensors may have none, two, or several options to choose from. If a desired option is not listed for a specific sensor, contact an application engineer at Campbell Scientific for assistance.